Unhackable internet

Later this year, Dutch researchers will complete a quantum internet between Delft and the Hague.

An internet based on quantum physics will soon enable inherently secure communication. A team led by Stephanie Wehner, at Delft University of Technology, is building a network connecting four cities in the Netherlands entirely by means of quantum technology. Messages sent over this network will be unhackable.

Unhackable Internet
  • Why it mattersThe internet is increasingly vulnerable to hacking; a quantum one would be unhackable.
  • Key playersDelft University of Technology
    Quantum Internet Alliance
    University of Science and Technology of China
  • Availability5 years

In the last few years, scientists have learned to transmit pairs of photons across fiber-optic cables in a way that absolutely protects the information encoded in them. A team in China used a form of the technology to construct a 2,000-kilometer network backbone between Beijing and Shanghai—but that project relies partly on classical components that periodically break the quantum link before establishing a new one, introducing the risk of hacking.

The Delft network, in contrast, will be the first to transmit information between cities using quantum techniques from end to end.

The technology relies on a quantum behavior of atomic particles called entanglement. Entangled photons can’t be covertly read without disrupting their content.

But entangled particles are difficult to create, and harder still to transmit over long distances. Wehner’s team has demonstrated it can send them more than 1.5 kilometers (0.93 miles), and they are confident they can set up a quantum link between Delft and the Hague by around the end of this year. Ensuring an unbroken connection over greater distances will require quantum repeaters that extend the network.

Such repeaters are currently in design at Delft and elsewhere. The first should be completed in the next five to six years, says Wehner, with a global quantum network following by the end of the decade.

Russ Juskalian

Leave A Comment

Your email address will not be published. Required fields are marked *